A mixed finite element for weakly-symmetric elasticity
نویسنده
چکیده
We develop a finite element discretization for the weakly symmetric equations of linear elasticity on tetrahedral meshes. The finite element combines, for r ≥ 0, discontinuous polynomials of r for the displacement, H(div)-conforming polynomials of order r+1 for the stress, and H(curl)-conforming polynomials of order r + 1 for the vector representation of the multiplier. We prove that this triplet is stable and has optimal approximation properties. The lowest order case can be combined with inexact quadrature to eliminate the stress and multiplier variables, leaving a compact cell-centered finite volume scheme for the displacement.
منابع مشابه
Towards a unified analysis of mixed methods for elasticity with weakly symmetric stress
We propose a framework for the unified analysis of mixed methods for elasticity with weakly symmetric stress. Based on a commuting diagram in the weakly symmetric elasticity complex and extending a previous stability result, stable mixed methods are obtained by combining Stokes stable and elasticity stable finite elements. We show that the framework can be used to analyze most existing mixed me...
متن کاملA Mixed Nonconforming Finite Element for Linear Elasticity
This article considers a mixed finite element method for linear elasticity. It is based on a modified mixed formulation that enforces the continuity of the stress weakly by adding a jump term of the approximated stress on interior edges. The symmetric stress are approximated by nonconforming linear elements and the displacement by piecewise constants. We establish (h) error bound in the (broken...
متن کاملDifferential Complexes and Stability of Finite Element Methods Ii: the Elasticity Complex
A close connection between the ordinary de Rham complex and a corresponding elasticity complex is utilized to derive new mixed finite element methods for linear elasticity. For a formulation with weakly imposed symmetry, this approach leads to methods which are simpler than those previously obtained. For example, we construct stable discretizations which use only piecewise linear elements to ap...
متن کاملSymmetric Nonconforming Mixed Finite Elements for Linear Elasticity
We present a family of mixed methods for linear elasticity, that yield exactly symmetric, but only weakly conforming, stress approximations. The method is presented in both two and three dimensions (on triangular and tetrahedral meshes). The method is efficiently implementable by hybridization. The degrees of freedom of the Lagrange multipliers, which approximate the displacements at the faces,...
متن کاملRectangular mixed elements for elasticity with weakly imposed symmetry condition
We present new rectangular mixed finite elements for linear elasticity. The approach is based on a modification of the Hellinger-Reissner functional in which the symmetry of the stress field is enforced weakly through the introduction of a Lagrange multiplier. The elements are analogues of the lowest order elements described in Arnold, Falk and Winther [ Mixed finite element methods for linear ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.02976 شماره
صفحات -
تاریخ انتشار 2018